DØ High Voltage System Tutorial

J. Frederick Bartlett

Outline

- Hardware
- EPICS Support
 - HV Record
 - HV Alarms
- Operator GUI Programs
 - HV Utility Display
 - Global HV Display
 - HV Channel Display
- Diagnostic Guidelines
- Ref:
 - \\D0server4\projects\Online_Comput ing\Tutorials\HvTutorial.ppt

Hardware - HV Crate

Hardware - HV Module

Hardware - HV Channel

Hardware

VME crate

- 6U size
- Custom backplane
- Additional voltage supplies
 - +5V Digital, +- 12V Analog, +-12 V Bulk(Unfiltered)
- Fermilab/BiRa 4877 module
 - Cockroft-Walton generator
 - Six modules per VME crate
 - 8 channels per module
 - 10 voltage generator pod types
 - Backplane trip links
 - Backplane module address encoding (geographical)

Hardware

- Reference
 - Bi Ra "Model VME 4877PS High Voltage Power Supply System Manual"

EPICS High Voltage Support

HV Record

- HV Record hv
 - High-level device interface
 - Sequential state machine model (limited implementation of Harel state diagram)
 - Ramp algorithm
 - Parabolic end sections
 - Linear center section
 - Convergence algorithm
 - Repeat ramp until within tolerance limit
 - Enter PAUSE state if repeat limit exceeded

HV Record

- Purpose
 - Control and monitor an individual HV channel
 - Add high-level operations to a basic voltage generator
- Implemented as a sequential state machine with states, transitions, actions, and events
- Ramping to a target voltage is a software function

HV Record - Pod Types

Pod Name	Max Voltage	Max Current
P5.5KV1	+5.5kV	2.3 mA
M5.5KV1	-5.5 kV	2.3 mA
P5.5KV2	+5.5 kV	1.0 mA
M5.5KV2	-5.5 kV	1.0 mA
P5.5KV3	+5.5 kV	0.1 MA
M5.5KV3	-5.5 kV	0.1 mA
P3.5KV	+3.5 kV	3.5 mA
M3.5KV	-3.5kV	3.5 mA
P2.0KV	+2.0 kV	3.2 mA
M10V1	-10 V	0.2 mA

HV Record - State Diagram

HV Record - Ramp Algorithm

- Compute average voltage
- Compute voltage step size and number of steps to reach target voltage
- Execute ramp steps
- Compute average voltage
- Compare abs(Vaverage Vtarget)
 with Vtolerance
 - less or equal Enter HOLDING state
 - greater Repeat ramp sequence

HV Record - Ramp Algorithm

 If the number of ramp cycles exceeds the limit, enter the PAUSE state and set an alarm condition

HV Record – Time Plots

- Decay profile
 - Capacitive load

HV Record – Time Plots

- Ramp regions
 - Parabolic ends
 - Linear center

HV Record - Trips

Channel

- Overvoltage
 - Trimpot setting
- Overcurrent
 - Register setting
- External
 - Backplane connection
- Module
 - Watchdog
 - Access timeout (unused)
 - Interlock
 - Front panel connector (unused)
 - External
 - Backplane connection

HV Record - Parameters

ACCL

- Parabolic acceleration rate (Volts/Sec**2)
 - RATE/ACCL = Duration of parabolic region (Sec)
- CSCAL
 - Ramping current scaling factor
- MAXC
 - Current trip level (uAmps)
- RATE
 - Ramp rate (Volts/Sec)
- VTOL
 - Voltage setting tolerance

HV Alarms

- Invalid Alarm
 - Hardware access error
 - OFFLINE or INVALID state
- Minor Alarm
 - OFF or PAUSED states
 - Current warning limit exceeded
 - Voltage warning limit exceeded
- Major Alarm
 - TRIPPED state
 - Current fatal limit exceeded
 - Voltage fatal limit exceeded
 - A tripped channel will pause the run

HV Alarms – SES Display

Operator GUI Programs

HV Utility display

- Monitor crate parameters (backplane voltages and temperature)
- Global HV display
 - Monitor channel state for multiple crates
 - Control state change for multiple crates
- HV Channel display
 - Monitor channel parameters for a single crate
 - Control state change for single channel or all channels in a crate

HV Utility Display

HV Utility Display

Purpose

- Monitor HV crate parameters
 - Backplane voltages
 - Temperature

Properties

- Organized by detector page
- Read-only access
- Background color indicates alarm state
- Implementation
 - Python script
 - Program name HvuGui.py
 - Configuration scripts xxx.hvu

Purpose

- Monitor state of channels in multiple crates
- Execute multiple-crate actions
- Initiate crate display
- Properties
 - Organized by crate
 - Multi-crate action buttons
- Implementation
 - Python script
 - Program name HvgGui.py
 - Configuration script xxx.hvg

- Crate button
 - Start individual crate display
- Action buttons
 - OFF set channels to OFF state
 - ON set channels to ON state
 - RESET reset tripped channels
 - FULL set to a full (operational) voltage
 - STANDBY set to standby voltage

- Buttons for other target voltages may be added in the configuration file
- Channel state colors
 - Purple OFFLINE, DISABLED
 - Blue OFF
 - Orange ON, PAUSED
 - Yellow AVERAGE, RAMP
 - Green HOLDING
 - Turquoise LOCKED
 - Red TRIPPED

Purpose

- Monitor individual channels
 - State
 - Voltage and current readback
 - Target voltage
 - Voltage and current trip levels
- Execute all-channel and individual channel actions
- Set all-channel and individual channel target voltages
- Usually displays a single crate

Properties

- Organized by channel
- Multi-channel action buttons
- Channel action menu button
- Implementation
 - Python script
 - Program name HvcGui.py
 - Configuration script xxx.hvc
- Action buttons
 - Similar to global display +
 - OFFLINE/ONLINE
 - PAUSE/RESUME
 - LOCK/UNLOCK
- Channel state colors
 - Same as Detector display

- Channel is in offline state
 - Missing HV module
 - Incorrect module type in database
 - Faulty module
- Module trips after transition from off to on state
 - After a period with the power off, the channel may not be stable. Leave the power on for ~1/4 hour, after which the channel may recover.
 - Faulty module

- Module trips during ramp but has not exceeded either the voltage or current trip limit
 - After a period in the off state, the channel may not be stable. Leave the channel in the on state at zero output for ~1/4 hour, after which the channel may recover
 - Faulty module

- Ramp away from zero volts does not converge to target voltage
 - Record tuning parameters set incorrectly
 - Faulty module
- Current trip during ramp caused by capacitance charging
 - Reduce ramp rate
 - Increase current scaling factor parameter
 - Lengthen parabolic ramp region

- Ramp toward zero volts does converges to the target voltage very slowly
 - Reduce load capacitance or increase shunt resistance
 - The Cockroft-Walton generator is a charge pump and can only drive the voltage away from zero (positive or negative). Ramping toward zero requires a shunt resistance to discharge the load capacitance and the voltage divider resistance in the pod is ~10-50 Megohms.

